Pioneering the great potential of offshore solar energy
The potential of SeaVolt is unlimited. Unlike existing floating solar installations on lakes, SeaVolt has developed a concept specifically tailored to the conditions of rough seas. With its modular design, this technology is highly suitable for installation as a complement to offshore wind farms.
Testing the solar panels
Under the framework of the Blue Cluster funded research project MPVAQUA and additional support from the federal government via BELSPO, the partners within SeaVolt together with
Ghent University (UGENT) are ready to conduct a year-round open-sea testing inside the POM-West Vlaanderen owned ‘Blue Accelerator offshore test zone’. This proof of concept installation will gather crucial data on the impact of waves, rain and salt sprays on various solar panels with different PV panel configurations. In addition, the impact of varying inclinations, caused by waves and wind, on the energy output will be closely monitored. The test aims to determine the level of protection required to shield the solar panels from seawater and bird droppings.
Testing the floater
Amongst other materials suitable for this floating technology, SeaVolt has chosen to use novel light-weight carbon fiber material in this test installation. This material presents potential benefits for offshore use however is not often used in such harsh marine conditions yet.
Optical embedded fibers and sensors attached to the structure will assess if the structural integrity (vibrations/fatigue) of the material is in line with the numerical models and results obtained from the ocean wave tank and wind tunnel tests. Since the floating structure and solar panels are driving the cost, these measurements are indispensable for further financial assessment.
Testing the ecological impact
In addition to technical tests, the SeaVolt test installation will also address ecological aspects. Various materials will be evaluated based on prevention of adverse effects on the marine environment. The test results will determine the selection of materials for further development. It is important not only to minimize the attachment of excessive marine growth to the floater to maintain its buoyancy. Lastly, specific tests will be conducted to assess combining the floater systems with mussel cultivation and oyster farming, which present specific challenges.
Floating laboratory
This crucial test, targeting all aspects of SeaVolt technology to develop a reliable, cost-efficient, and sustainable solution, will be the first installation in the Belgian North Sea aimed at the large-scale development of offshore solar energy. Since this test is only containing a few solar panels for a rather large floater construction, it is not to be seen as a first prototype of the full scale. It is rather a laboratory to gain knowledge and push the technological development further. The expectations for this new application of solar energy are high. Offshore solar energy provides an additional opportunity to produce local green energy. Combined with offshore wind, it aligns with the strategy of multi-use sites and can optimize the use of existing electrical infrastructure.
Promising European market
The significant potential of offshore solar energy is also recognized internationally. It has captured the attention of the European Green Deal plans, with an announcement by the Dutch government to have 3 GW of offshore solar energy in operation by 2030, and concrete projects under development up to 100 MW. Technology development is essential to achieve these ambitions. With this offshore test, SeaVolt is taking the critical initial step to further advance large-scale marine floating solar energy.
Next steps for SeaVolt
Meanwhile, ecological research and economic research is ongoing amongst others covering future LCOE evolutions analysis. To ensure further development, Seavolt is preparing for a large-scale demonstration project within an offshore wind farm. As such the potential of integrating offshore floating solar inside an offshore windfarm will be further assessed. If all goes well, large scale offshore solar energy is expected to become a reality and in this case, Seavolt hopes to secure a significant share in this new development of the already strong Belgian offshore sector.
Vincent Van Quickenborne, Minister of the North Sea: “The North Sea is becoming the powerhouse of our energy independence. These floating solar panels have the potential to generate 1 GW of additional green power in wind farms, which is the equivalent of a nuclear power plant. With this test project, which is like a solar lab at sea, we are taking a unique lead in a new sector. Our companies are once again pioneering this technology, contributing to green economic growth and creating more jobs. We do this in a way that takes into account the impact on the marine environment. In this way we show that economy and ecology can go hand in hand.”
Thomas Dermine, Secretary of State: “Solar energy in the North Sea has the potential to become just as important as our wind farms when it comes to green power generation. To accelerate the development of offshore solar energy, we are investing in technology and know-how among Belgian players through our recovery plan. In this way we are addressing three crucial challenges simultaneously: the fight against climate change, greater independence from energy imports, and the development of technological expertise in Belgium that creates new jobs and exports.”
Philippe Van Troeye, CEO Tractebel: “While we are convinced that offshore solar has an important role to play in the accelerated energy transition, technological development is often seen as a bottleneck for unlocking the full potential of this exciting market. With SeaVolt, and more specifically with this cutting-edge test nearing completion, we’ll be able to observe how such an installation behaves under real-life conditions, providing us with the necessary knowledge to mature and mitigate risks for future developments. I am extremely proud that, together with our partners, we took up the challenge of combining technical and environmental research from day one. With this approach we believe we can reach beyond the typical goal of decarbonization, aiming for nature-friendly and eventually even nature-boosting installations.”
Dirk Defloor, Area Director Benelux – DEME Group: “Building on our unrivalled knowledge of operating in challenging environments and with our leading role in the offshore wind industry, DEME is extremely pleased to bring its expertise to this pioneering energy project and to work alongside strong partners that also share our vision to achieve a more sustainable world. We are excited to reach the installation phase and are looking forward to the outcome of this test project, which will provide invaluable insights into the potential of this new floating solar technology. We believe SEAVOLT, whichcombines solar and wind energy offshore, provides interesting opportunities for the energy transition.”
Julie De Nul, CEO Jan De Nul Group: “We are thrilled to launch the SeaVolt technology, which represents the culmination of years of hard work and innovation in offshore PV technology together with our partners. As we enter the offshore test phase, we are excited to see what this technology will become. The floating solar energy test platform is a crucial step in developing a reliable and sustainable solution. It serves as a laboratory to gain knowledge and push the technological development further. We believe SeaVolt has the potential to play a crucial role in optimising the use of space on the sea by complementing offshore wind farms. We are excited to shape the future of renewable energy and contribute to a more sustainable future.”
Vincent De Raedt, Division Manager, Equans Belux: “Our multi technical experience in marine, offshore and solar panels, makes us an ideal partner for the construction of this test-installation and future projects. In addition to installing the solar panels, the batteries and the low-voltage boards, as main contractor, we’re responsible for the complete follow-up of the design, construction, and transport of the composite structure. On top, we can call on our expertise in placing sensors to continuously monitor the installation, essential for the study carried out by the consortium. This project fits seamlessly with our ambition as Equans to assist customers in the energy transition in which floating offshore PV will play an important role in our future energy supply”,
Margriet Drouillon, Senior Business Developer, UGent: “We are excited to be a part of this pioneering journey of testing a solar floating PV system at sea. This ambitious project reflects Ghent University’s engagement to advancing multi-use of space at sea. In this respect, SEAVOLT represents a significant milestone towards demonstrating the feasibility and the sustainability of integrated, sustainable offshore energy and food production in high-energy environments.”