Unprecedented precision and speed are the outstanding features of a novel high-throughput system for the metallization of silicon solar cells and other functional printing applications. The system is able to realize high-precision coating processes using rotary screen printing and flexographic printing with a throughput corresponding up to 8000 components per hour on an industrial scale. The demonstrator machine was developed by a project consortium under the joint leadership of the ASYS Automatisierungssysteme GmbH and the Fraunhofer Institute for Solar Energy Systems ISE. In addition to solar cells, the system enables high-precision printing on single components, e.g. for applications in the field of hydrogen technology, sensor technology or power electronics.
The main focus of the Rock-Star research project was the evaluation and development of rotary printing methods for silicon solar cell production. This project has now been successfully completed upon the realization of a novel demonstrator for the high-throughput coating of silicon solar cells and other electronic components. The new system features a newly developed high-throughput transport system, in which the components to be printed e.g. silicon solar cells, are transported on autonomous shuttles with high speed and precision through the rotary printing units of the Gallus Ferd. Rüesch AG, a Swiss printing machine manufacturer which is part of Heidelberger Druckmaschinen AG. Finest structures can be printed directly on the components. Depending on the specific requirements, a flexographic printing or a rotary screen printing unit can be used for the printing process. The modular system design also facilitates other printing and coating processes such as multi-nozzle dispensing and gravure printing.
The novel transport system conveys the components with speeds up to 600 mm/s and ensures high precision printing. Compared with the current state-of-the-art machines in, e.g. solar cell metallization, this corresponds to a theoretical throughput increase of 100% per production line. “The newly developed system is a direct answer to industry’s need for innovative technologies which significantly increase productivity,” explains Dr. Florian Clement, head of the Department of Production Technology – Structuring and Metallization at Fraunhofer ISE.