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Firmware development
methodology designed to
simplify wind turbine
converter validation and
certification

Words: Eduardo Sanz, Technical Services Product Manager, Ingeteam Wind Energy

As more wind energy is connected to the grid, ensuring the correct electrical
performance of the wind turbine is critical, to maximise production and also
ensure the safe operation of the grid. The power converter is the active
component connecting the turbine to the grid. As the interface between the

two, the power converter is designed to function to meet the needs of the
generator side and the grid side.

Following power converter installation,
unwanted firmware behaviour can have
serious consequences, fromimpact on
production, leading to reduced revenues, to
non-fulfilment of grid code requirements. It
can even lead to damage to other turbine
components, resulting in higher operational
and maintenance costs.

Ingeteam’s robust firmware development
methodology has been developed to
minimise onsite validation and certification
and has several key benefits:

- Enables the ability to track the
desired functionality from specification
to validation.

- Allows for establishing requirements for
various functionalities, including
converter protections and emergency
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sequences, fieldbus communications,
dynamic behaviour, power quality (PQ)
response, fault ride-through (FRT) and
dynamic response.

- Enables determination and defining of the

proper validation environment for every
stage of the development and
functionality of the power converter,
allowing for testing of functionality, from
individual code debugging to partial code
software-in-the-loop (SiL) simulation, to
full controller testing in hardware-in-the-
loop (HiL) simulation.

- Allows automation of test execution to

ensure the validity of a solution upon
multiple external conditions, such as
grid variations and grid code fulfilment
for example.
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Through this methodology process, any
issues found during the validation stage are
quickly fed back into the development stage
tobe corrected.

Validation procedure

The firmware development is based ona
procedure where the focusis set on the
definition and successful execution of the
validation tests. The ultimate goal s to verify
and demonstrate that the customer’s
requirements are fully met.

Therefore, the procedure highly relies on the
definition of the tests and on the platforms
used during the validation.

The present article focuses on steps 2 and 3,
where the iterations for the firmware
qualification are performed.

Test definition and execution

As atest-based validation approach, a critical
aspect of the procedureis the correct
definition and tracking of the requirements and
the test sequences. The replicability of the test
plansis essential for aniterative validation of
new firmware releases and must be automated
as much as possible for this purpose.

The first step involved in the validation
procedure involves the definition of the tests
forming a test plan, and the programming of
the execution of such tests. For that
purpose, Ingeteam has developed a
web-based test automation tool that
manages the execution of the tests.

The first step involves the definition of the
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VALIDATION PROCEDURE

¢ Pre analysis - requirement
¢ Test routine definition with procedure for new requirement

¢ Implementation of the functionality

* Controller software generation
o Programming of the functionality in the firmware according to Ingeteam's
controller criteria
o Generation of firmware deliverable, for converter tests and Hil tests
o Generation of library component (i.e.: .DLL/so) for SiL simulations
o Type tests of the functionality. Individually tested through SiL / HiL

 Serial validation of deliverable software
o Creation/update of the routine validation plan including the new functionality, if
applicable
o Serial/Routine validation of the complete firmware according to validation plan
(SiL/HIL)

¢ Final design and certificates
o Expedition of validation certificates
o Final documentation approved
o Generation and publication of deliverable software pack

Figure 1. Validation procedure, from request to release
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Figure 2. Test Automation Tool steps
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Figure 3. Overview, test categories and target system

an EMT model, where the main control
routines are compiled into an
executable library (i.e.: .DLL) with the
exact same source code that is
deployed in the converter.

Software-In-The-Loop validation « Low-leveldebugging

Ingeteam targets this validation through
Software-In-The-Loop (SiL) models for the
critical control software components and
through Hardware-In-The-Loop (HiL)
simulators for full software + hardware
(controller) integration testing.

« Flexible modellingnon-dependent on
hardware limitations

« Multiple controller instances
SiL. modelling allows for detailed debugging
down toindividual breakpoints on the source
code, supporting anin-depth testing of
DSP’s control routines.

« Start from snapshot
- SiL modelling consists of a detailed + Execution fromlibrary component -
representation of the converter,

generator, grid and control logics inside

no need for any hardware equipment

SiL validation advantages include: (controller)
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« Directintegrationin other platforms or
higher-level models (i.e.: wind turbine
models, wide-area grid models)

SiL validation limitations are:

» Non-real-time execution, long
simulation times required, depending
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EMT model

Time domain
(Full wave sim.)

PLC

main
logics

Detailed converter

on model complexity

of SiL validation.

An accurate representation of the control
dynamics is achieved by the flexibility of the
time step selection, which typically ranges
from <1ps. to 50ps., ina compromise
between execution speed and electro-
magnetic transient precision based on
testrequirements.

For example, inthe case of high precision
requirements such as harmonic spectrum

Partial coverage of original source code.
Focused mainly on the validation of the
electrical control algorithms and
modulations, not all the original firmware
layers canbeincludedin the executable
library. Hardware abstraction layers,
fieldbus communications, HMland
high-levellogics, for example, are not part l
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Figure 5. SiL EMT model overview
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Hardware-in-The-Loop validation

To overcome the limitations of SiL validation,
a Real Time Simulation platformisincludedin
Ingeteam’s validation procedure, thus
incorporating the real Converter Control
Unit (CCU) for a full HiL validation.

LConverter Controller

The clear advantage of this stepis that the %)@ (&) (W) (e )

firmware tested is exactly the same as the B | B0 L
onereleased to production, running exactly
inthe same controller thatis installed inside T Loy s L ?_—_. B m
the converter.

HilL validation advantages include: Real Time

Simulator g

« Full coverage of converter firmware.

« Full coverage of controller’s hardware
(Digital & Analog 1/Os, Fieldbus e i
communications, encoder signals, HMI
interfaces, etc.).

Tl e m e mm-----
« Real Time execution. Two systems Detailed converter
available depending on the required

precision for the test under execution:

Figure 7. HiL system overview
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Figure 8. Ingeteam'’s dynamic response under SIL & HIL simulation for a three phase 120% overvoltage (left)

and 30% undervoltage (right) cases. 2 www.ingeteam.com
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