• News
  • Misc
  • Press Releases
  • Renewable News

CUHK Faculty of Engineering Develops Effective Energy Harvester Breaking through the Limitation of Battery Life of Smart Watches and Wristbands


Smart watches and wristbands are becoming more and more popular. Various new functions such as health monitoring, contactless payment, entertainment, living assistance, have been added to these small devices and bring convenience to our daily lives. However, the limited battery life of these devices, due to its critical size, remains a key issue.

To address this issue, a research team led by Prof. Wei-Hsin LIAO, Chairman of the Department of Mechanical and Automation Engineering (MAE) at The Chinese University of Hong Kong (CUHK), has developed an embedded energy harvester which is very efficient in generating electricity to sustainably power the smart watches and wristbands.

Energy harvesters have been used to power up traditional watches in which mechanical gears are equipped to increase the frequency of human motion and convert mechanical energy to electricity. But these designs have the disadvantage of incompact structure and require precision manufacture. The mechanical friction caused by the gears also leads to significant energy loss and such devices occasionally suffer mechanical failure.

Prof. LIAO and his research group on smart materials and energy harvesting tried to replace mechanical gears with electromagnetic components to solve the key issue. Dr. Mingjing CAI, one of the research group members, said, “The low frequency of human motion results in relatively low energy conversion efficiency. We applied a magnetic frequency-up converter to increase the frequency of human motion, which helps the energy harvester to efficiently convert the human motion into electrical energy. With the magnetic frequency-up converter, the output power of the device can be significantly enhanced, achieving ten times that of the published devices.”

To read the full content,
please download the PDF below.