异质结技术(HJT)是目前太阳能行业中提升太阳能电池效率和太阳能电池组件输出功率的一种最佳选择。HJT结合了掺氮晶体硅片的高质量与非晶硅薄膜层的最佳钝化效果和电荷选择特性,以及高度透明的TCO接触层,用于生产一种高性能太阳能电池,其性能超过了具有扩散发射极的传统太阳能电池,例如PERC。异质结太阳能电池由硅晶片制成,两极均使用钝化接触。由于这些非常薄的非晶硅层堆的有益能量水平、电荷载体选择性和极好的钝化特性,可能实现特别高的效率。除此之外,HJT太阳能电池非常适合双面模块应用。
与PERC或TOPCON电池相比,HJT太阳能电池的生产工艺更为简单,所需的生产步骤明显更少。而且,其组件的功率年退化率为0.45%,与PERC组件0.7%的年退化率相比要好得多。由于较高的电池效率和较低的温度系数,与传统的硅太阳能电池相比,HJT模块可提供更高的平均能量生产性能。
2019年《光伏杂志》(PV Magazine)报道了全尺寸(244cm²)双面接触异质结太阳能电池的最高效率记录,达25.11%。背面接触异质结电池26.7%效率保持了单晶体硅太阳能电池的最高记录。如今额定容量400瓦的带HJT太阳能电池的太阳能组件已经面市。
预计未来异质结电池市场会有很高的增长率。2019年的《国际光伏技术路线图》报告预计,HJT电池将在2026年占到市场份额的12%,到2029年将占至15%——十年前,只有松下一家公司生产使用该技术的产品,这种增速十分稳定。
如今,全球许多地区都已经在生产HJT太阳能电池,比如日本、新加坡、台湾、中国大陆、美国和欧洲。
德国新格拉斯科技集团与异质结
过去,德国新格拉斯科技集团已向许多大型太阳能电池制造商供应生产设备。湿法处理设备以及真空薄膜沉积设备在世界各地的电池厂商中得到有效应用。2019年,集团为一家大型太阳能电池一级制造商安装了一台GENERIS PVD大型在线真空溅射设备,用于异质结太阳能电池生产,并发挥了出色的生产性能。
异质结溅射技术
将具有不同电子性质的薄膜沉积在掺氮晶体硅片上,以生产和供应电能。异质结和钝化结构由本征和掺杂非晶硅的双面薄层形成。在这些硅结构的顶部,通过溅射工艺涂上薄而透明的导电氧化物膜(TCO)作为接触层,将产生的电从电池中传导出去。
通过溅射沉积进行镀膜的其中一种最常用的办法就是使用磁控管源,在磁控管源中,等离子体受到磁场的限制和增强。正离子从等离子体中加速进入目标表面,释放目标材料并涂覆在基板上。常见的溅射方法包括用于导电靶的直流(DC)溅射和用于非导电靶的射频(RF)溅射。市场上的磁控溅射有各种模式,如直流、脉冲直流、双极和射频。由于其多功能性、方便的工艺控制以及低成本大规模应用的可能性,溅射沉积或溅射已广泛用于不同行业以及研发中。
异质结技术(HJT)是目前太阳能行业中提升太阳能电池效率和太阳能电池组件输出功率的一种最佳选择。HJT结合了掺氮晶体硅片的高质量与非晶硅薄膜层的最佳钝化效果和电荷选择特性,以及高度透明的TCO接触层,用于生产一种高性能太阳能电池,其性能超过了具有扩散发射极的传统太阳能电池,例如PERC。异质结太阳能电池由硅晶片制成,两极均使用钝化接触。由于这些非常薄的非晶硅层堆的有益能量水平、电荷载体选择性和极好的钝化特性,可能实现特别高的效率。除此之外,HJT太阳能电池非常适合双面模块应用。
与PERC或TOPCON电池相比,HJT太阳能电池的生产工艺更为简单,所需的生产步骤明显更少。而且,其组件的功率年退化率为0.45%,与PERC组件0.7%的年退化率相比要好得多。由于较高的电池效率和较低的温度系数,与传统的硅太阳能电池相比,HJT模块可提供更高的平均能量生产性能。
2019年《光伏杂志》(PV Magazine)报道了全尺寸(244cm²)双面接触异质结太阳能电池的最高效率记录,达25.11%。背面接触异质结电池26.7%效率保持了单晶体硅太阳能电池的最高记录。如今额定容量400瓦的带HJT太阳能电池的太阳能组件已经面市。
预计未来异质结电池市场会有很高的增长率。2019年的《国际光伏技术路线图》报告预计,HJT电池将在2026年占到市场份额的12%,到2029年将占至15%——十年前,只有松下一家公司生产使用该技术的产品,这种增速十分稳定。
如今,全球许多地区都已经在生产HJT太阳能电池,比如日本、新加坡、台湾、中国大陆、美国和欧洲。
德国新格拉斯科技集团与异质结
过去,德国新格拉斯科技集团已向许多大型太阳能电池制造商供应生产设备。湿法处理设备以及真空薄膜沉积设备在世界各地的电池厂商中得到有效应用。2019年,集团为一家大型太阳能电池一级制造商安装了一台GENERIS PVD大型在线真空溅射设备,用于异质结太阳能电池生产,并发挥了出色的生产性能。
异质结溅射技术
将具有不同电子性质的薄膜沉积在掺氮晶体硅片上,以生产和供应电能。异质结和钝化结构由本征和掺杂非晶硅的双面薄层形成。在这些硅结构的顶部,通过溅射工艺涂上薄而透明的导电氧化物膜(TCO)作为接触层,将产生的电从电池中传导出去。
通过溅射沉积进行镀膜的其中一种最常用的办法就是使用磁控管源,在磁控管源中,等离子体受到磁场的限制和增强。正离子从等离子体中加速进入目标表面,释放目标材料并涂覆在基板上。常见的溅射方法包括用于导电靶的直流(DC)溅射和用于非导电靶的射频(RF)溅射。市场上的磁控溅射有各种模式,如直流、脉冲直流、双极和射频。由于其多功能性、方便的工艺控制以及低成本大规模应用的可能性,溅射沉积或溅射已广泛用于不同行业以及研发中。
To read the full content,
please download the PDF below.